Sunday, 9 December 2012

herald of the new age or galactic superwave


 Hang on to your pants...


Posted 27 November 2009 - 03:38 PM
Thank you tinieblas! I researched a bit more the 26000 years periodic movement of the solar system and came accross an article discussing the theories of LAViolette, who as far as i know was the first to propose the SuperWave theory - that every 13000 years (when we cross the galactic equator?) the earth recieves a galactic wave that distrupts it's balance.
Here is the theory accompanied by evidence found throughout the last 20 years:


LaViolette: Superwave Theory dissertation 1980 – 1983
PAUL A. LaVIOLETTE, PH.D, is author of The Talk of the Galaxy, Earth Under Fire, Genesis of the Cosmos (Beyond the Big Bang), Subquantum Kinetics, and editor of A Systems View of Man. He has also published many original papers in physics, astronomy, climatology, systems theory, and psychology. He received his BA in physics from Johns Hopkins, his MBA from the University of Chicago, and PhD from Portland State University and is currently president of the Starburst Foundation, an interdisciplinary scientific research institute.

The whole dissertation would not be appropriate but we will cover the 15 Main predictions that have subsequently been verified and confirmed.

Prediction No. 1 (1980 – 1983): In his Ph.D. dissertation, LaViolette hypothesized that galactic core explosions recur about every 10,000 years and last for several hundred to a few thousand years. He was the first to suggest such a short recurrence time for galactic core explosions and that our own Galactic core undergoes Seyfert-like explosions with similar frequency.

Subsequent concurrence (1998): In 1988, when presented with Dr. LaViolette’s Galactic explosion hypothesis, astronomer Mark Morris dismissed the idea as having no merit. However, in 1998 after ten years of observation, Morris was quoted as saying that the center of our Galaxy explodes about every 10,000 years with these events each lasting 100 years or so.

Prediction No. 2 (1980 – 83): Dr. LaViolette’s studies concluded that Galactic center cosmic ray volleys interact minimally with interstellar magnetic fields and are able to propagate radially outward along rectilinear trajectories traveling through the Galaxy at near light speed in the form of a coherent, spherical, wave-like volley. He was the first to suggest this idea of a “Galactic superwave.”

Verification (2000): Radio astronomers announce at the January 2000 American Astronomical Society meeting that the synchrotron radio emission radiated from the Galactic center (Sgr A*) is circularly polarized. Scientists present at the meeting concurred with Dr. LaViolette’s suggestion that the circular polarization indicated that cosmic ray electrons were travelling radially away from the Galactic center along straight-line trajectories.

Prediction No. 3 (1980 – 1983): LaViolette concluded that a volley of Galactic cosmic rays had bombarded the Earth and solar system toward the end of the last ice age (ca. 14,000 years BP). Also his findings suggested that other such superwaves had passed us at earlier times and were responsible for triggering the initiation and termination of the ice ages and mass extinctions. He was the first to suggest recurrent highly-frequent cosmic ray bombardment of the Earth.

Verification (1987): Glaciologists discovered beryllium-10 isotope peaks in ice age polar ice. These indicated that the cosmic ray flux on the Earth became very high on several occasions during the last ice age, confirming Dr. LaViolette’s theory that Galactic superwaves have repeatedly passed through our solar system in geologically recent times.

Prediction No. 4 (1980 – 1983): LaViolette hypothesized that large amounts of interstellar dust and frozen cometary debris lie outside the solar system just beyond the heliopause sheath and form a reservoir of material that would have supplied large amounts of cosmic dust during a prehistoric superwave event.

Verification (1992 – 95): Telescope observations revealed the presence of the Kuiper belt, a dense population of cometary bodies encircling the solar system, beginning just beyond the orbit of Neptune and extending outward past the heliopause sheath.

Verification (1999): Observations of the influx of interstellar dust particles using the Ulysses spacecraft lead Markus Landgraf and his team of European Space Agency astronomers to conclude that the solar system is surrounded by a ring of orbiting dust that begins just outside the orbit of Saturn.

Prediction No. 5 (Sept. 1979): LaViolette theorized that if a cosmic ray volley (superwave) had passed by at the end of the ice age, it would have pushed nearby interstellar dust into the solar system. To test this, he began a plan to analyze ice age polar ice for traces of cosmic dust.

Verification (2003): Using data obtained from the Ulysses spacecraft, a group of European Space Agency astronomers led by Markus Landgraf discover that the rate of interstellar dust influx increased three fold from 1997 to 2000 with the approach to solar maximum. They theorize a correlation between solar cycle phase and interstellar dust influx rate, with the influx rate being highest at the time of solar maximum. Such a correlation could explain why the Sun could become locked into an active, dust accreting mode during times of superwave passage.

Verification (2004): Glaciologists find that the concentrations of iridium and platinum in submicron sized “meteoritic smoke” particles present in polar ice are two to three times higher during the last ice age.

Verification (2007): A group of scientists, the Younger Dryas Boundary (YDB) group, reports high levels of extraterrestrial indicators (Ir, Ni, cosmic spherules, microtektites, 3He, fullerenes at the 12,950 yrs b2k Alleröd/Younger Dryas boundary layer that overlies extinct megafauna and Clovis artifacts.

Prediction No. 6 (1981): LaViolette found very high concentrations of tin in several ice age polar ice dust samples, one 50,000 year old sample, in particular, containing 60% of its weight in tin. Elevated concentrations of gold, silver, and antimony as well as the cosmic dust indicators iridium, and nickel were also found in the samples. He theorized that due to the presence of iridium and nickel, this tin-rich dust must be of extraterrestrial origin, possibly coming from an anomalous interstellar source.

Verification (May 2007): A group of cosmochemists report finding high levels of tin (25 – 28%) and copper (1 – 11%) along with ET material indicators platinum and nickel in magnetic separates retrieved from the 12,950 yrs b2k Alleröd/Younger Dryas boundary layer and from Clovis sites. They conclude that the grains bearing these volatile metals are of extraterrestrial origin.

Prediction No. 7 (1981): Having found very high concentrations of tin in several ice age ice core dust samples in association with high levels of iridium, and nickel, LaViolette theorized that this tin-rich dust was of extraterrestrial origin and that if so the tin should have anomalous isotopic ratios.

Verification (Jan. 1984): Geochemists at Curtin University (Australia) in collaboration with LaViolette used a mass spectrometry technique to determine the isotopic ratios of an unirradiated portion of the tin-rich dust sample. They found significant isotopic anomalies in four isotopes thereby confirming LaViolette’s prediction that the tin dust is of extraterrestrial origin. This marked the first time that tin isotopic anomalies had been discovered.

Prediction No. 8 (1983): In his dissertation, LaViolette demonstrated that the last ice age was ended by a 2000 year long global warming which he calls the Terminal Pleistocene Interstadial (TPI) identified with the Alleröd-Bölling interstadial in the north. He also proposed that this was followed by a global return to glacial conditions, identified with the Younger Dryas in the north. He showed that the melting of the ice sheets was synchronous in the northern and southern hemispheres and was brought about by cosmic causes.

Verification (1998): Climatologists (Steig et al.) published findings in Science demonstrating the synchronous occurrence of the Alleröd-Bölling-Younger Dryas climatic oscillation in the Taylor Dome Antarctic ice core. They claimed this as evidence that the last ice age was ended by a global warming. Although they should have been aware of LaViolette’s publications, their report did not cite his prior work.

Prediction No. 9 (1983): In his dissertation, LaViolette proposed that invading cosmic dust would have caused the Sun to become more luminous and engage in continual flaring activity. In chapter 4, he suggested that on one occasion the Earth and Moon may have been engulfed by a large prominence remnant “fireball” (coronal mass ejection) thrown out by the Sun during a period of particularly intense solar activity. He interpreted the findings of Zook and Gold as evidence that the Sun had been in a highly active T-Tauri like flaring state and that at times its flaring activity had been as much as 1000 times currently observed levels. He suggested that these may have scorched the surface of the Earth in ice age times, inducing high temperatures, rapid ice sheet melting, global flooding, and mass animal extinction.

Verification (2008): LaViolette locates the legendary solar conflagration event in Summit, Greenland ice cores. Using correlations to the Cariaco Basin varve chronology, he dates this event at 12,885 years b2k. He finds that it is marked by a sudden increase in atmospheric radiocarbon concentration which occurs together with a climatic warming climate in Greenland changing from glacial to interglacial temperatures within less than two years. He finds that the event is also associated with an increase of ammonium, oxylate, and formate ion, which is indicative of a period of global biomass combustion. This suggests that this is the time of the conflagration that produced the Usselo Horizon. He also finds that it occurs together with an acidity ECM spike lasting less than a month as well as a rise of nitrate ion, both being indicators of a dramatic rise in the influx of solar cosmic rays.

Prediction No. 10 (1983): In chapter 3 of his dissertation, LaViolette proposed that geomagnetic reversals are induced by solar cosmic ray storms. He proposed that at times when invading cosmic dust causes the Sun to become very active and engage in continual flaring activity, major solar outbursts could occur that are a thousand times more intense than those currently observed. Further he proposed that solar cosmic rays from such a mega flare could impact the Earth’s magnetosphere, become trapped there to form storm-time radiation belts, and generate an equatorial ring current producing a magnetic field opposed to the Earth’s. If sufficiently intense, this ring current magnetic field could cancel out the Earth’s own field and flip the residual magnetic field pole to an equatorial location. From this position it could later either recover or adopt a reversed polarity. He proposed that this geomagnetic excursion would be very rapid, occurring in a matter of days.

Concordance (1995): Unaware of LaViolette’s publications, two French geophysicists published a paper that sought to explain the Steens Mountain polarity reversal as being due to a solar cosmic ray cause. Their mechanism was the same as that which LaViolette had proposed 6 years before the Steens Mountain discovery. Their independent arrival at the same idea is evidence of parallel idea development and consensus with LaViolette’s earlier theory.

Verification (1994, 1995): McHargue, et al. discover Be-10 anomalies in ocean sediments at 32 kyr and 43 kyrs BP, contemporaneous with the Mono Lake and Laschamp geomagnetic excursions. Unaware of LaViolette’s publications, they suggest they were caused by the passage of supernova shock fronts during a time of unprecidented long-term solar activity.

Prediction No. 11 (1983): Anomalously young radiocarbon dates are frequently found in fossil remains of Pleistocene megafauna that became extinct at the end of the last ice age. In chapter 10 of his dissertation, LaViolette proposed that a solar cosmic ray conflagration caused the demise of these mammals and their subsequent burial by the action of glacier meltwater waves. He suggested that the neutron shower produced by the intense solar cosmic ray storm (coronal mass ejection) that engulfed the Earth would have radiogenically changed nitrogen atoms in animal collagen into carbon-14 atoms. He proposed that this in situ radiocarbon generation could have made the radiocarbon dates on exposed organic matter anomalously young.

Concordance (2000 – 2004): Additional evidence comes from analysis of the varved sediments from the Cariaco Basin off the coast of Venezuela and from Icelandic ocean sediments showing a 9 percent rise in C-14 during the time of the megafaunal extinction, from 13,500 – 12,800 years b2k, and on several previous occasions, including a 90 percent rise in radiocarbon concentration that climaxed around 40,000 yrs b2k after having progressively risen for a period of 5000 years. The events coincide with times when the atmospheric beryllium-10 production rate also rose to high levels.

Prediction No. 12 (1983): LaViolette proposes that much of the glacial drift deposited at the end of the last ice age was laid down by glacier waves issuing from the upper surfaces of the ice sheets. These are water outbursts far larger than the glacier bursts seen today issuing from mountain glaciers.

Verification (1988): German scientist Harmut Heinrich calls attention to North Atlantic ocean sediment layers composed primarily of rock grains of continental bedrock origin that had been transported distances of up to 3000 kilometers prior to their deposition. Subsequent investigations uncovered evidence that these “Heinrich layers” were deposited suddenly. Heinrich advances a theory that this material was transported by drifting and melting ice bergs. However, not all are satisfied with this explanation which fails to explain the suddenness of the deposition events. In 2001 (Galactic Superwaves CDROM), LaViolette shows that Heinrich events correlate with times of climatic warming and that these layers are evidence of long-range sediment transport by glacier waves. He shows that Heinrich layer 0 correlates with accelerated glacier wave discharge activity he proposed was occurring around 12,700 years BP and that Heinrich layer 1 spans the Pre-Bölling Interstadial which began the deglaciation phase.

Prediction No. 13 (1983): In his dissertation, LaViolette proposed that a superwave produced by an explosion of our Galaxy’s core could be immediately preceded by a very strong gamma ray pulse, 10,000 times stronger than what could come from a supernova explosion. He pointed out that upon impacting our upper atmosphere this burst could strip electrons and induce a powerful electromagnetic pulse which, like a high-altitude nuclear EMP, could have serious consequences for modern society. It could knock out satellites, interrupt radio, TV, and telephone communication, produce electrical surges on power lines causing widespread black outs, and possibly trigger the inadvertent launching of missiles. He was among the few to suggest that Galactic core explosions could produce high intensity gamma ray outbursts that could affect the Earth.
In 1989, under the sponsorship of the Starburst Foundation, LaViolette initiated an international outreach project, to warn about the dangers of such astronomical phenomena. He pointed out that our Galactic center could produce seriously disruptive low intensity outbursts as frequently as once every 500 years and that we are currently overdue for one. This was the first time a widespread gamma ray pulse warning of this sort had been made.

Verification (1997): In December 1997, astronomers for the first time pinpointed the source of a gamma ray burst and found that it originated from a galaxy lying billions of light years away. This led them to conclude that these are mostly extragalactic events having total energies millions of times greater than they had previously supposed, thereby confirming LaViolette’s earlier proposal of the existence of high intensity gamma ray bursts. If this particular outburst had originated from our Galactic center, it would have delivered 100,000 times the lethal dose to all exposed Earth life forms.

Verification (1998): Some months later, in August 27, 1998, a 5 minute long gamma ray pulse arrived from a Galactic source located 20,000 light years away in the constellation of Aquila. The event was strong enough to ionize the upper atmosphere and seriously disrupt satellites and spacecraft. It triggered a defensive instrument shutdown on at least two spacecraft. Astronomers acknowledged that this marked the first time they became aware that energetic outbursts from distant astronomical sources could affect the Earth’s physical environment. These events reaffirmed the validity of warnings LaViolette made 9 years earlier about the potential hazards of such gamma ray bursts.

Prediction No. 14 (1980 – 1983): In his dissertation, LaViolette proposes that quasars and blazars are the bright cores of spiral galaxies in which the light from the core is so bright that it masks the dimmer light coming from the galaxy’s disk. He suggests that quasars and blazars are essentially the same core explosion phenomenon that is seen in Seyfert galaxies and N-galaxies. He predicts that when it eventually becomes operational the Hubble Telescope will resolve the disks around these bright cores. He also suggests that edge-on spiral galaxies with active cores would give the appearance of being giant elliptical galaxies due to synchrotron radiation emitted from their outward streaming cosmic rays. In connection with this, he predicts that when active giant ellipticals are imaged with the Hubble Telescope, spiral arm dust lanes oriented edge-on will be detected.

Verification (1995, 1997): Astronomers publish the results of a survey which imaged quasars using the Hubble Space Telescope. These quasars (luminous cores) are seen to be surrounded by spiral arm disks, just as LaViolette had predicted. Earlier in 1982 a group of astronomers had resolved galactic light fuzz around quasar 3C273 using a special imaging technique. This was published after the date of LaViolette’s prediction. In 1997 NASA astronomers release a photo of an active giant elliptical galaxy that resolves its equatorial dust lane and shows that it is oriented edge-on as LaViolette had predicted.

Prediction No. 15 (1979): LaViolette discovered that the ancient star lore connected with the Sagittarius and Scorpius constellations indicated the location of the Galactic center, conveyed the idea of an explosive outburst, and specified a significant past date of 13,865 ± 150 years B.C. which also is encoded in the ancient Egyptian Dendereh zodiac. Also LaViolette found that myths, customs and esoteric lore descendent from prehistoric times indicated that cosmic rays from a Galactic core explosion catastrophically affect the Earth and solar system in recurrent cycles with the most recent event occurring near the end of the last ice age. He wrote up this idea in an unpublished paper in 1979 and formally published these ideas in 1995 and 1997 in his books Beyond the Big Bang and Earth Under Fire. In Earth Under Fire he also connected Mayan cosmology and World Ages with the Galactic center and Galactic superwave events. He began discovering these associations around 1987.

Concordance (2000): LaViolette discovered evidence indicating that the largest acidity spike in the entire Antarctic ice core record was of extraterrestrial origin, possibly produced by a major incursion of interstellar or cometary dust; see paper posted at solar.html. The date of this event, beginning 13,880 B.C. and tailing off 13,785 B.C., closely corresponds to the date encoded in zodiac star lore marking the arrival of a galactic superwave.
 source

Here is the article:
Galactic wave every 13000 years